目的 研究干旱胁迫下苦豆子子叶中赖氨酸脱羧酶(lysine decarboxylase,LDC)基因表达量与苦参碱(matrine,MA)和氧化苦参碱(oxymatrine,OMA)含量的关系。方法 以不同质量分数PEG 6000胁迫萌动苦豆子种子,72 h后高效液相色谱(HPLC)测定其苦参碱和氧化苦参碱含量,荧光定量PCR(Real-time fluorescence quantitative PCR,qPCR)测定赖氨酸脱羧酶表达量。结果 萌动苦豆子种子在轻度胁迫(PEG质量分数<15%)下,子叶中苦参碱和氧化苦参碱含量降低,重度胁迫(PEG质量分数>20%)下,子叶中苦参碱和氧化苦参碱含量升高。荧光定量PCR显示,子叶中赖氨酸脱羧酶表达量随胁迫加剧呈先降后升的趋势,特别是在轻度和重度胁迫下,赖氨酸脱羧酶表达量与苦参碱和氧化苦参碱含量变化一致。结论 苦豆子子叶中苦参碱和氧化苦参碱含量与赖氨酸脱羧酶的表达有一定的关系。
Abstract
OBJECTIVE To study the effect of lysine decarboxylase (LDC) gene on the accumulation of matrine(MA) and oxymatrine (OMA) in cotyledon of Sophora alopecuroides L. germinating seeds. METHODS The S.alopecuroides germinating seeds were stressed by different mass fractions of PEG 6000, and the contents of MA and OMA were determined by high performance liquid chromatography (HPLC) and the expression level of LDC was analyzed by real-time fluorescence quantitative PCR (qPCR) after 72 h treatment. RESULTS The contents of MA and OMA decreased in the cotyledon under light stress (PEG mass fraction<15%), while increased with the stress getting higher (PEG mass fraction>20%). The analysis of qPCR revealed that the LDC expression level was decreased first, and then increased with the stress rising. The changes of the contents of MA and OMA were parallel with the expression level of LDC especially under light and severe stress. CONCLUSION There is certain association between the accumulation of MA and OMA and the gene expression quantity of LDC. The results is of significance for illustrating the role of LDC in the biosynthetic pathways of MA and OMA.
关键词
苦豆子 /
氧化苦参碱 /
赖氨酸脱羧酶基因(LDC) /
荧光定量PCR /
基因表达
{{custom_keyword}} /
Key words
Sophora alopecuroides L. /
oxymatrine /
lysine decarboxylase gene (LDC) /
real-time fluorescence quantitative PCR (qPCR) /
gene expression
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI X W. Flora of China(中国植物志). Beijing:Science Press,1994:80.
[2] YANG Y, LIU B R. Research progress on plant characteristics and resource utilization of Sophora alopecuroides. Guizhou Agric Sci(贵州农业科学), 2013, 41(12):4-9.
[3] TAO S C, WANG J Z. The pharmacological effects of alkaloids in Sophora alopecuroides. Chin Pharm J(中国药学杂志), 1992, 27(4):201-203.
[4] BUNSUPA S, YAMAZAKI M, SAITO K. Quinolizidine alkaloid biosynthesis:Recent advances and future prospects. Front Plant Sci, 2012, 3(239):1-7.
[5] HARTMANN T, SCHOOFS G, WINK M. A chloroplast-localized lysine decarboxylase of Lupinus polyphyllus. FEBS lett, 1980, 115(1):35-38.
[6] FENG Y, HU X W, WANG Y R, et al. Study on seed yield and its components of Sophora alopecuroides under different water regimes. Pratac Sci(草业科学), 2010, 27(7):48-51.
[7] JI Y, LAN H M, CHEN H, et al. Nitrogen nutrition effects on character, biomass and alkaloid accumulation of Sophora alopecuroides. Acta Agrestia Sin(草业学报), 2008, 17(3):40-46.
[8] WANG J, LUO G H, YAN X, et al. Effect of drought stress on imbibition germination and seedling growth of Sophora alopecuroides. Chin Tradit Herb Drugs(中草药), 2011, 42(9):1807-1811.
[9] LU M H, LI X M, CHEN J F, et al. Study on chilling tolerance of cucumber during germination and expression of lysine decarboxylase gene. Sci Agric Sin(中国农业科学), 2005, 38(12):2492-2495.
BUNSUPA S, KATAYAMA K, IKEURA E, et al. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell, 2012, 24(3):1202-1216.
DEBOER K D, DALTON H L, EDWARD F J, et al. RNAi-mediated down-regulation of ornithine decarboxylase (ODC) impedes wound-stress stimulation of anabasine synthesis in Nicotiana glauca. Phytochemistry, 2013, 86:26-33.
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
MEWIS I, KHAN M A, GLAWISCHNI E, et al. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L. ). PLoS ONE, 2012, 7(11):e48661.
JALEEL C A, MANACANNAN P, SANKAR B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloid Surface B, 2007, 60(2):201-206.
HUANG L Q, GUO L P. Secondary metabolites accumulating and geoherbs formation under environmental stress. Chin J Chin Mater Med(中国中药杂志), 2007, 4(32):277-280.
WANG J, WANG J H, ZHANG Y. Response of Sophora alopecuroides and Thermopsis lanceolata seed germination and growth to drought stress . Chin J Eco-Agric(中国生态农业学报), 2011, 19(4):872-877.
WALTER L.Plant Eco Physiology. Beijing:China Agriculture University press, 1997:246.
TANG Z H, YU J H, YANG F, et al. Metabolic biology of plant alkaloids . Chin Bull Bot(植物学通报), 2003, 20 (6):696-702.
SU W H, ZHANG G F, LI X H, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition . Chin Tradit Herb Drugs(中草药), 2005, 36(9):1415-1418.
KUZNETSOV V, SHORINA M, ARONOVA E, et al.NaCl-and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the commonice plant to salt stress. Plant Sci, 2007, 172(2):363-370.
GAMARNIK A, FRYDMAN R B.Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol, 1991, 97(2):778-785.
MIAO Y M, NING Y, SHEN J, et al. Cloning of LDC gene and its expression analysis under several adversity stresses from Cucumis sativus L.. J Nanjing Agric Univ(南京农业大学学报), 2013, 36(3):8-14.
VERPOORTE R, VAN DER HEIJDEN R, SCHRIPSEMA J. Plant cell biotechnology for the production of alkaloids:present status and prospects. J Nat Prod, 1993, 56(2):181-187.
HUGHES E H, SHANKS J V. Metabolic engineering of plants for alkaloid production. Metab Eng, 2002, 4(1):41-48.
CANEL C, LOPES-CARDOSO M I, WHITMER S, et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta, 1998, 205(3):414-419.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
宁夏回族自治区自然科学基金(NZ14033)
{{custom_fund}}